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Studies have been made of the addition of a harmonic number, h=4, radio-frequency system to the 
existing h = 2 system in ISIS. The design aim is an improvement in the beam bunching factor for the 
acceleration of more intense beams. Use has been made of a longitudinal spacecharge tracking code to 
defme a set of parameters for the acceleration of 3 x 1Ol3 protons per pulse, 24OpA average. This corre- 
sponds to an increase of 20% in the maximum intensity achieved to date. Further studies indicate that it 
may in fact be possible to accelerate 3.7 x lOI protons per pulse, 295pA, by these means. 

Equations of Particle Motion 

The motion of particles in a synchrotron is normally studied through the equations 

dAE e --=- 
dt 00 27r MN - I++,) + V,,Wl (1) 

where AE = E - E,; q = l/9 - l/f; E and $ are the energy and phase of the particle; V($) is the acceler- 
ating waveform; and h is the harmonic number. The suffix s refers to the synchronous particle and, since 
the equations govern only the first-order variations from synchronous values, the revolution frequency 
wo is the value for the synchronous particle to a first approximation. KC represents the space-charge forces 
generated within the beam and is given by 

(3) 

where X is the line density of particles, L is the total inductance per turn of the reactive wall, R the radius 
of the machine, and, for a beam with circular cross-section of mean radius a in a circular pipe of radius 
b, go = 1 + 2 ln(b/u). 

Applied Voltage 

When the applied voltage is sinusoidal, V(e) = 9 sin Q, the behaviour of the particle beam, either in the 
absence of space-charge or in the case of simple particle distributions, is welI known.‘2 Here we wish to 
study the effect of introducing an additional acceleration component of harmonic number 2h, giving a 
combined voltage which may be written in the form3 

V($) = G(t)[ sin($) - 6 sin(241+ Cl)] (4) 

The problem is to find a continuous sequence of parameters, 6 and 0, to find a stable system optimised 
in the sense of being able to contain intense beams with good bunching factor and low loss. 

By balancing the energy gain to the effect of the guide magnetic field, we can find the synchronous phase 
through the equation 

27tRpti = G[ sin 4~ - 6 sin(245 + 0)]. (5) 

where_ p, is the mean bending radius. For convenience, we shall denote by A the acceleration term 
2rcRpB/V. When 6 = 0, assuming A -c 1, there are two solutions of equation (4) in the range [ - rc, YC]. 
One, sir-‘A, defines the phase of the synchronous particle and the other, ‘IC - sWA, gives the maximum 
limit of stability. An example of the voltage shape when Ml is shown in Figure 1, which is drawn for 



6 = 0.58 and Cl = -6OO. This suggests that, for a limited range of values of A, it may be possible for four 
solutions to exist. 
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Figure 1. Shape of the Dual Harmonic Voltage Function 
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Figure 2. Phase-space Trajectories 

The nature of these soiutions may be found by looking at the the phase-space trajectories of particles, 
given by constant values of the Hamiltonian. Ignoring space-charge, 

H= (6) 

A - P2 



where 

wo =fh40 - W~nw 
b 

=-~[cos~-cos~s - %6{ cos(241+ 0) - cos(2& + Cl)} + A(+ - $,>I 

A typical plot, such as that shown in Figure 2, reveals that two of the points, 4, and &, defme stable 
synchronous particles. The solution & defines the extreme unstable fmed point and the fourth represents 
a IocaIly unstable fixed point near the centre of the stable region. It is this fourth solution that we take 
as $. 

Equation (5) is equivalent to the condition dU/@= 0 and comparison of graphs of U(4) for 
6 = 0 and 6 > 0 (Figure 3) make clear that the introduction of the extra minimum leads to an extended 
region of $ over which stable oscillations are possible. 
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Figure 3. Potential Energy for 6 > 0 (continuous curve) 
and 6 = 0 (dashed curve). 

Bunching factor, which is important since it is directly proportional to the maximum amount of beam that 
can be contained by the system, is also enhanced. Analytically thii may be demonstrated by looking at 
the Hofmann-Pedersen particle distribution2, which is a self-consistent model in which the space 
charge-forces have the same form as the applied voltages. For such a beam, the line density may be 
written 

where Nb is the number of particles in the bunch and 

The bunching factor is then Nd2n?~(i), with 4 the value of $ corresponding to the peak value of h (either 
$1 or 42). Defming 

fl&J, 0,) = sin $” - sin $A - ‘/2(4+ - $J( cos $, + cos $J 

this can be written most simply as 

(7) 

These equations may be solved numerically and show that a non-zero 6 can produce a bunching factor 
increased by as much as 50%. For example, when 6 = 0, $,= 28O, B,= 0.29, but with 
6 = 0.58, I& = 28’ and 8 = -60°, Bf = 0.43, an increase of 49.1%. 



As a rough guide to the values of 8 to use, we may note that 8 = -3. will leave the synchronous phase 
unaltered when the additional voltage terms are introduced, but a more detailed analysis is needed to fmd 
the best scheme for the cgmplete bunching process in a synchrotron. The quantity A for example depends 
critically on the ratio &V and, if the cavity voltages are not high enough to keep A less than about 0.7 
it turns out that it is not possible to find a combination of 8 and 6 to give four solutions of (5). In addition, 
even when there are four solutions, the stable region can collapse at CpI and degenerate into two separate, 
small, regions centred on $, and QL. To investigate these effects in detail requires numerical analysis of 
equations (5) and (6). This reveals that for values of A IO.5 most vaIues of 6 IO.6 and 8 5 0.0 give 
enhanced stable regions of phase-space, but as soon as A increases above 0.5, the range of acceptable 
6 and 8 diminishes, and above 0.65 only a very limited range of 6 and 8 will work. The conclusion is 
that a suitable dual harmonic system can only be devised if the design voltages of the cavities are high 
enough to prevent A becoming too large, thereby allowing a complete set of continuous 6- and Cl-values 
for the whole cycle. Given this, the condition for non-degeneracy of the stable region is 

where I$,. is the maximum phase excursion. For continuity under acceleration as A increases from zero 
(starting at time t = 0), we require 

qs=O e=o 6=0.5 at t=O. (8) 

The three roots $,, @, h then coincide at the start of acceleration and immediately start to separate. 
For maximum area of the stable region, it is also found that 8, while always negative, should have as 
small an absolute value as possible. 

Simulation Model for ISIS 

The behaviour of the beam in ISIS from the start of injection through trapping and acceleration to an 
energy of 8OOMeV, a timespan of just over lOmsec, has been modelled by means of a one-dimensional 
tracking code based on the equations of motion (1) and (2). The injected beam has been assumed to be 
uniformly spread in phase from -x to A and to have parabolic momentum spread corresponding to 
Ap/p = k2 x W3. The simulation uses less than 20,000 particles in total but avoids the problem of having 
only a few unrepresentative particles for each injected turn by allowing particles to carry different charges 
and superimposing incoming beam onto existing beam by a weighted method of charge allocation onto 
an imaginary grid Space charge is calculated from the line density according to equation (3) after a 
measure of smoothing has been carried out to remove statistical effects. Other parameters used in the 
model are 

h=2 R=26m p=7m y,=5.05 go=1.75 

B(t) = Bf) - B1 cos(2@) (9) 

where 

B. = 0.4369T B1 = 0.2604T f = 5OHz. 

The first simulation runs were made with a beam of 2 x 1Ol3 protons per pulseAand a simple sinusoidal 
voltage (6 = 0). These were used to determine the optimum voltage protiIe for V and also determine the 
point in the process at which the voltage should be switched on, so as to balance the requirements of low 
loss and small momentum spread. The result was a voltage profile looking broadly like that shown in 
Figure 4 but scaled to a peak of 14OkV. Loss was predicted to be under 5%, all occurring in the first 
l.Smsec of the cycle, and was found to be minimised by switching on the r.f. cavities as early in the 
process as possible. Maximum momentum spread was less that 7.7 x 1C3. 

For the dual harmonic model, the definition of A, equations (5) and (9) give the restriction 

A_&,, 2 27cRpli 1 max = 93.54 kV 

If the maximum cavity voltage is 14OkV, A will exceed 0.67 and at this level it is at best extremely dif- 
ficult to design a stable system. The full design capacity of the cavities must therefore be used and the 
voltage profile re-scaled to a peak of 160kV (A 5 0.6) as shown in Figure 4 and the first two columns 
of Table 1. 
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Figure 4. Cavity Voltages for ISIS Simulation Model 
(The solid curve represents V(t); the dashed curve shows 

the second harmonic voltage SV.) 

A suitable set of values of 0 and 6 corresponding to the voltages can then be genemted numerically. A 
fully optimised system (based on maximising the bunching factor) would not be practical since the 
parameters vary too rapidly and too widely to make economic sense, but we can follow the method used 
to control the cavity voltages. In ISIS these are prescribed as a set of values at fixed times between which 
the controlling computer carries out linear interpolation in the form of very smaU step functions. Similar 
schemes have been produced for S and 8, keeping to the voltage data times where possible, and these are 
shown in Figures 5 and 6, with specific values laid out in Table 1. 
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Figure 5. S-ratio of Cavity Voltages. 

With this model, 6 is switched on at t = - O.lSmsec and rises through 0.5 at t = O.Omsec (equation (8)) 
to a maximum of 0.6. This peak value, determined by design and cost limitations, is maintained for just 
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under 3msec, but, because we also require that the 2h-harmonic voltage does not exceed 8OkV, 8 is 
brought down to 0.5 at 4mscc and held at this level through to the end of the cycle. This maintains the 
extended bucket and allows the three fmed points & , & and + to coalesce smoothly to zero as A + 0. 
Figure 6 also shows the limits between which 8 has to lie for solutions to be possible with this choice 
of 6, and shows how the values have been chosen close to the upper limit to maxim& the stable phase- 
space region. Note the severity of the restrictions for t > 7.5msec. Additional considerations are that the 
bunch at 8OOMeV should have approximately the same length as in the single harmonic model, and that 
the maximum momentum spread should not exceed previous values. 
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Figure 6. 8-values for ISIS 
(The solid curves give the upper and lower limits of 8. The dashed curve shows 
the values used by the model for ISIS.) 
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Figure 7. Bunching factors based on a Hofmann-Pedersen Distribution 
(GO: continuous curve; 6=0: dashed curve) 
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Bunching factors for this system, based on equation (7), are shown in Figure 7, with a superimposed 
dashed curve representing values when 6 = 0. Throughout the acceleration, the increase is well above 30% 
and between OSmsec and 15msec is above 45%. In particular, at lmsec, which is the time in ISIS at 
which space-charge limiting effects are most critical, the bunching factor is increased by 49%. This sug- 
gests that it may in fact be possible to accelerate as many as 3.7 x 10” protons per pulse using the dual 
harmonic system. 

The main simulation runs, however, have been can&l out for a beam of 3 x 1Or3 protons per pulse, 
24OpA average current. This compares with 2OOpA currently running in the machine. A selection of plots 
of phase-space is shown in Figure 9, with the superimposed limiting stable region calculated from the 
Hamiltonian via equation (6). Different colours are used to show the density of charge of the particles, 
ranging from red at high density through to blue at low density. From top left to bottom right, the plots 
show the initial formation of a single central core, just after injection but before acceleration and before 
the dual harmonic waveform is switched on. This develops into two centres as the particles start to orbit 
around the stable points, $, and b. Beam begins to spiral out and there is some loss (third and fourth 
pictures) but the ‘arms’ are largely confined by the separatrix as the bucket contracts. At 6msec, the 
bucket is expanding again, and as the acceleration slows, as 8OOMeV is approached, @, & and & coalesce 
and the bunch develops a fairly uniform line density stretching from -65’ to 70° (or 120nsec in length). 
Total loss for the run was calculated to be as low as 3.5% but, whereas for the single harmonic, it was 
confined to the frost 15msec, the simulation indicates that for the dual harmonic model, it may continue 
as far as 6msec into the cycle. One reason for this, as comparison of Figure 8 with Figure 5 suggests, is 
the reduction in 6 from 0.6 to 0.5 between 3 and 4msec. It may however be possible to avoid the later 
loss by modifying the voltage profile slightly at earlier times. Such a modification should also reduce 
the maximum momentum spread, which although generally within 8.5 x 1P3 does briefly get as high as 
1 x W2 and is larger than we would ideally like. 
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Figure 8. Simulated beam loss for the ISIS model 

Initial runs have more recently been carried out for the simulation of 3.7 x 10” protons per pulse. The 
results have been very encouraging. Loss is slightly greater and again takes place up to 6msec, but is still 
under 4%. Bunch length at extraction is about 130nsec and maximum momentum spread 8.8 x 10-‘. 
These predictions could also probably be improved by slight changes to the cavity voltages early in the 
cycle. 

Conclusions 

The study suggests that, by enhancing the bunching factor at critical times and increasing the stable 
regions of phase-space, use of the dual harmonic waveform should allow more intense beams to be 
accelerated in synchrotrons. For ISIS the design parameters produced here are within the specifications 
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of the r.f. cavities and it is hoped that some initial experiments may be carried out before the middle of 
1994. 

Table 1. ISIS Voltage Parameters 
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Figure 9. Phase-space plots for the injection and acceleration to 8OOMeV of a beam of 
3 x lOI protons per pulse in ISIS. 
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